

OT-Security

Warum unser Denken gefährlicher ist als jede Schwachstelle?

In 30 Minuten: 6 Erkenntnisse für Ihre Sicherheit

Warum Denkfehler gefährlicher sind als fehlende Patches

Warum OT ≠ IT ist – gleiche Ziele, aber andere Spielregeln

Warum Legacy ein Risiko ist, aber kein Schicksal

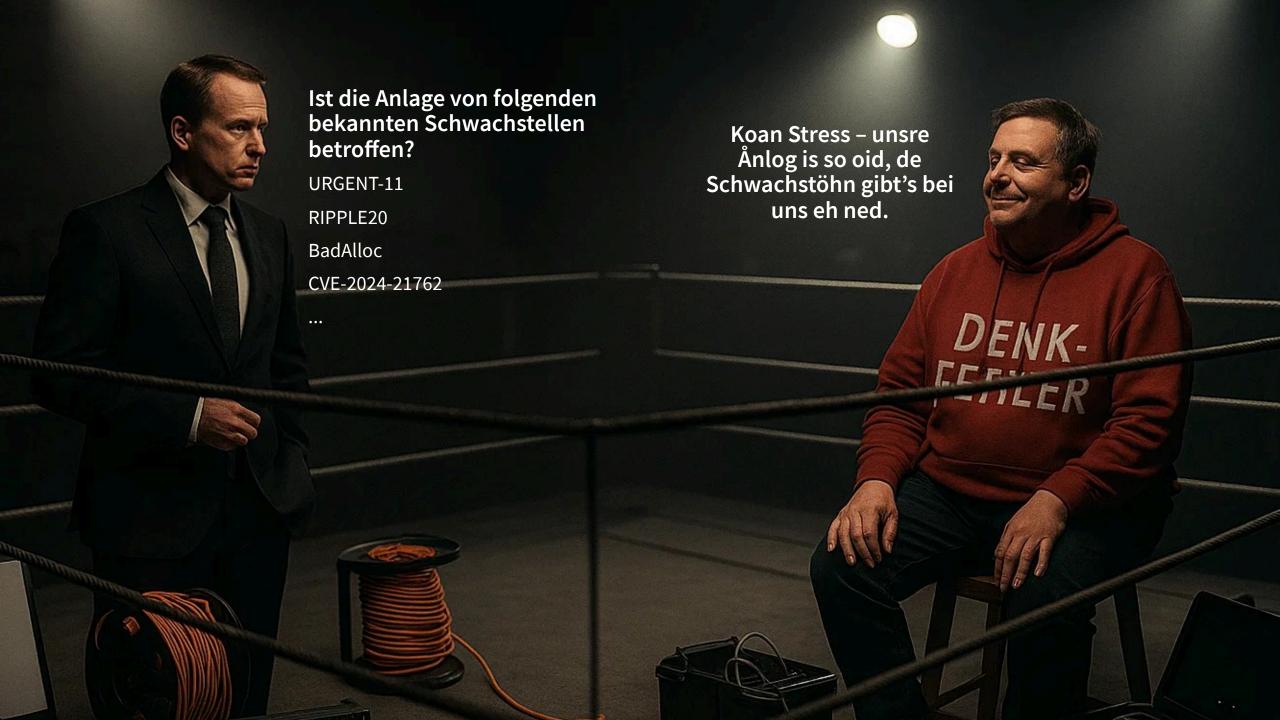
Welche Metriken wirklich zählen – und nicht lügen

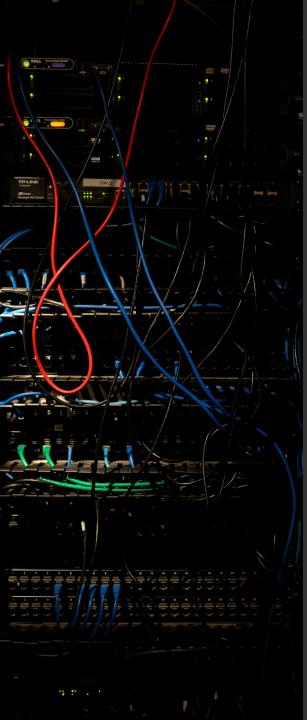
Warum Segmentierung & Monitoring den Tool-Zoo schlagen

Wie Resilienz durch geübte Wiederanläufe entsteht

IT, IoT, OT – Drei Welten. Drei Risiken. Ein Ziel.

- Entwickelt für Vertraulichkeit und Geschwindigkeit
- Nutzt KI, Cloud, Edge Skalierbar, innovationsgetrieben
- Aber: keine Rolle für Safety, keine physische Resilienz


IoT – Die Welt der Verbindung


- Verbindet IT und OT mit Echtzeitdaten
- Optimiert Prozesse, erhöht Effizienz
- Brücke aber auch Einfallstor für
 Angriffe Anfällig, weil oft ungeschützt &
 breit verteilt
- **©** IoT verbindet und öffnet zugleich neue Angriffsflächen.

OT – Die Welt der physischen Kontrolle

- Steuert Maschinen, Prozesse, Anlagen in Echtzeit
- Fokus: Safety, Resilienz, Verfügbarkeit
- Basierend auf Legacy-Systemen schwer patchbar, aber unverzichtbar
- Kritisch für Strom, Wasser, Verkehr
- OT hält die Welt am Laufen auch dann, wenn alles andere offline ist.

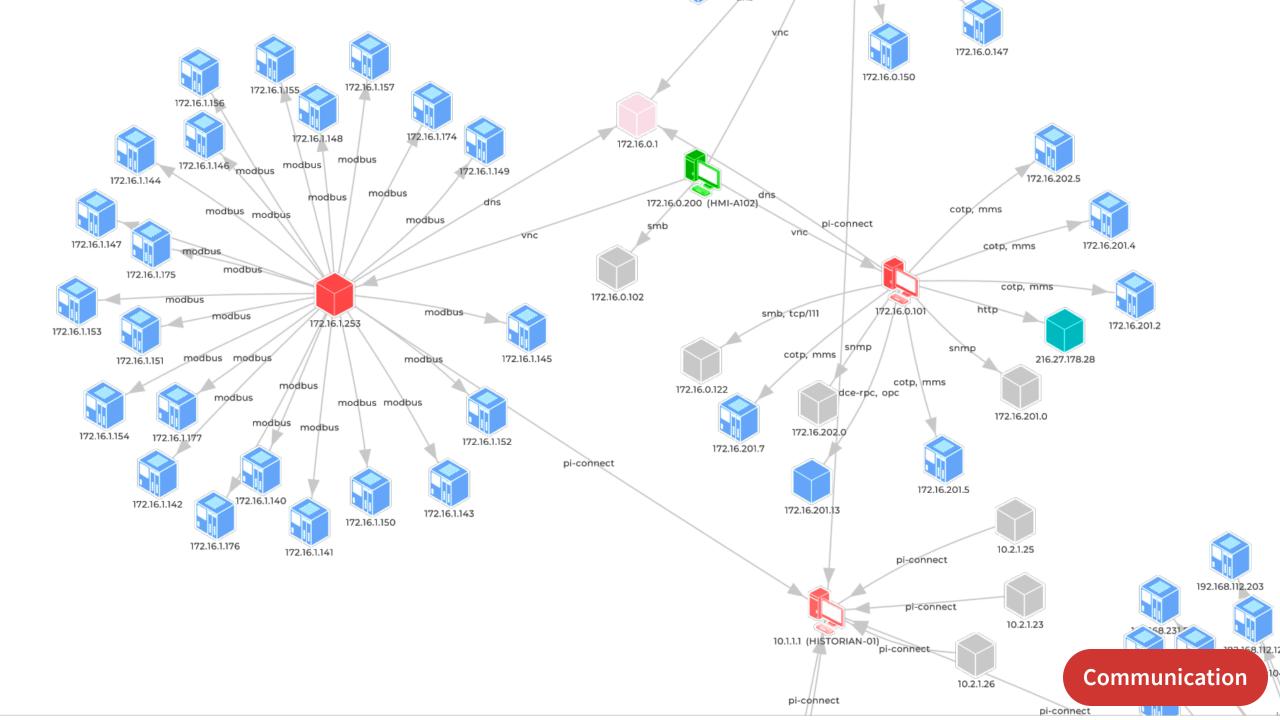
#1 Air-Gap

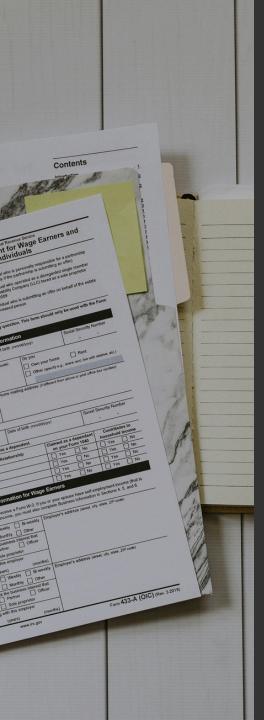
Nicht glauben – verifizieren: isolieren, kontrolliert koppeln, dauerhaft überwachen.

"Air-Gap = sicher"

- Verdeckte Brücken (VPN/USB/WLAN/Cloud) bleiben unbemerkt
- Vermeintliche Isolation wird durch Engineering-Laptops und externe Modems aufgehoben.
- "Air-Gap" selten verifiziert

"IT/OT zusammen + Endpoint + NDR genügt"


- OT != IT/IoT (Safety, Echtzeit, Legacy begrenzen Kontrollen)
- NDR/NTA sieht viel, stoppt aber nichts ohne harte Perimeter


"DMZ = automatisch sicher"

- Falsche Trusts/Bypässe, Dual-Homing, unklare Datenfluesse
- Ohne Nachweise bleibt die DMZ nur "Checkbox"

IUEG: isoliert, überwacht, getrennt, entkoppelt

- Internet-Entkopplung in OT
- Zonen/Conduits (IEC 62443), deny-all/permit-by-exception auf Zellenebene
- IT/OT-DMZ + Remote-Access-DMZ (Jump-Server, Proxy, Recording)
- Data Diodes OT->IT; Mikrosegmente fuer High-Criticality
- PAM/MFA/JIT; keine IT<->OT-Trusts; strikte Sprungserver-Pflicht
- Passives OT-NDR/NTA + zentrales Logging
- Pull-the-Plug-Drills & USB-Canary-Tests

#2 Compliance ≠ Sicherheit

ISO 27001/NIS Audits bestanden – Risiko unverändert: fehlende Mitigations, Legacy, keine Wirksamkeitsnachweise

"Audit-grün = sicher"

- geprüft wurden vor allem
 Dokumente/Momentaufnahmen, nicht die
 Wirksamkeit.
- Scope-Lücken & Stichproben lassen kritische OT/Legacy-Themen unberührt.
- Legacy?

Red Flags

- Ungepatchte Systeme ohne kompensierende Kontrollen (Segmentierung/Allowlisting/IPS).
- **Remote-Zugänge** ohne MFA/Jump-Host/Session-Logs.

Audits unterstützt die **OT-Sicherheit** proaktiv

- **Sichtbarkeit schaffen:** Prüfen, ob **Asset-Inventar** und **Netz-Flows** vollständig sind (was ist wo, wer spricht mit wem?).
- **Governance klären:** Rollen, Freigaben, **Wartungsfenster** und Notfallprozesse verankern.
- Risiken priorisieren: Legacy/Unpatchbares, Remote-Zugänge, schwache Segmentierung werden sichtbar und gewichtet.
- Evidenz einfordern: Belege für Segmentierungs-Tests, Restore-Drills (RTO/RPO) und Alarm-Response (MTTD/MTTR).
- **Verbesserungen treiben: CAPA-Plan** (Maßnahmen, Verantwortliche, Fristen, Enddatum für Ausnahmen).
- Lieferkette absichern: Nachweise zu MFA/Jump-Host/Logs bei Dienstleistern und Wartungspartnern.

End of support:

other

IP	192.168.1.3	MAC address (2)	00:16:b9:49:b6:40, 00:16:b9:49:b6:7d
Roles:	other	MAC vendor	Hewlett Packard
Product name	i ProCurve 2626 Switch	Vendor	i Hewlett Packard
Туре	i Switch	Firmware version	i h.10.38
Product lifecycle status End of sale: i 2009-02-01	i End of support		

Overview Alerts Software **Vulnerabilities** Variables Sessions 193 active 0 high · 0 med. 0 installed 0 high · 0 med. 0 entries

Focus on 00:16:b9:49:b6:40 >

2017-02-16 13:57

Network Stats	Focused on: 00:16:b9:49:b6:40		
Received	25.3 KB	Retransmission	Links
Sent	188.0 B		_

i 2014-02-01

First seen 2017-02-16 13:57 0.0 B in last 30' Last seen 2017-02-16 13:57 active

0.000%

Focused on: 00:16:b9:49:b6:40 **Network Location** Zone Subnet VLAN Layer2

Properties

No properties to display

Focused on: 00:16:b9:49:b6:40 **Protocols** Last activity Outbound Protocol Inbound

* Learning status Node is Asset intelligence fully

#3 Kein Vorfall = kein Risiko

Vorfallsfreiheit beweist nichts, - **Risiko bleibt** (Hazard × Vulnerabilität × Exposition × Auswirkung).

Wahrnehmung

- Normalcy Bias: Lange Ruhe = "Normalzustand"
- Availability Heuristic: Schwer vorstellbar = "unwahrscheinlich"
- Confirmation Bias: Nur bestätigende Hinweise zählen
- Outcome Bias: Gutes Ergebnis = "gute Entscheidung"
- Risk Homeostasis: Gefühlte Sicherheit → riskanteres Verhalten

Datenlücken

- Sampling-/Messlücken: Keine Erkennung/Logs → falsche Null
- Unterreporting: "Niemand meldet" ≠ "nichts passiert"

Denkfehler

- Abwesenheit von Evidenz ≠ Evidenz der Abwesenheit
- Survivorship Bias: Nur die "überlebten" Tage sichtbar
- Basisraten-Ignoranz: Grundwahrscheinlichkeiten ignoriert
- Regressionsirrtum / Lucky Streak: Glück als Trend gedeutet

"Keine Vorfälle zeigen nur, dass wir Glück oder wirksame Kontrollen hatten – nicht, dass kein Risiko existiert."

Alert **Process time issue** [812429bd-ff82-41c7-9da3-63a8975d7d3e]

What happened

The time notified in the ASDU (2001/01/06-22:06:02) is inconsistent with the packet time.

Possible cause

The time stamp specified in process data is not aligned with current time. There could be a time sync issue with the source device, a malfunctioning or a packet injection.

Suggested solution

Verify the device configuration and status.

Source	
Zone	Undefined
Label	n.a.
IP	192.168.1.11
MAC	18:66:da:00:01:11
Port	36037
Roles	consumer, web_server
Types	computer
Users	0

Communication	
Protocol	iec104
Transport protocol	tcı

7

Destination	
Zone	Undefined
Label	plc098.ACME0.corporationnet.com
IP	192.168.168.140
MAC	00:00:23:a8:a8:8c
Port	2404
Roles	producer
Types	OT_device
Users	0

Environment

Audit alert operations

Nodes currently involved

Selection info 😩 🛦 🌥 🎋 🐡 🗇

Alerts

#4 Der "Unsere-Leute" (Irrtum)

Vertrauen mit System, nicht aus Gewohnheit

People (Menschen & Können)

- Denkfehler: "Unsere Leute schaffen das allein."
- Was passiert: Man fragt zu spät um Hilfe, hält an Gewohnheiten fest, übersieht Risiken.
- Beispiele: Gemeinsame
 Passwörter, Alarme stumm
 schalten "nur kurz",
 Änderungen ohne
 Zweitsicht.
- unreflektierteBetreibsroutine

System (Abläufe & Regeln)

- Denkfehler: "Prozesse bremsen nur."
- Was passiert: Änderungen ad hoc, schlechte Doku, Ausnahmen ohne Enddatum, unsichere Fernzugriffe.
- Beispiele: Keine vollständige Geräteliste, flaches Netzwerk, Backups nie getestet.

besser

- Mentoring
- 4-Augen-Prinzip
- externe Zweitmeinung bei heiklen Aufgaben
- Checkliste + Rollback-Plan
- "Stop-the-Line" bei Bypässen
- Segmentierung (IT/DMZ/OT)
- Rollen statt Shared-Accounts, Sprungserver mit Aufzeichnung
- regelmäßige Restore-Tests mit Protokoll
- Ausnahmen max. 90 Tage.

Incident Eng operations [55f0cb29-b8fc-47a0-b07b-659fd82f0a2b]

What happened

Eng operations made on device 192.168.10.17 issued by host 192.168.20.12

9 13:51:29.197

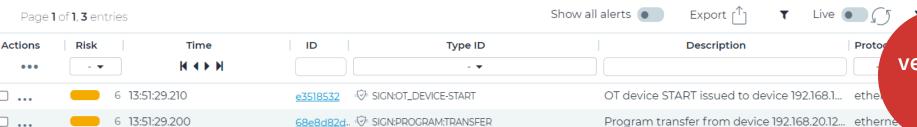
Possible cause

Various operations to modify the configuration, the program, or the status of a device have been detected.

Suggested solution

OT device STOP issued to device 192.168.10... ethernet...

Validate the engineering operations.


Source Zone 192.168.20.0/24 Label EWS.ics.lab IΡ 192.168.20.12 MAC 18:a9:05:24:d8:b5 Port n.a. consumer, engineering_station Roles Types Users 0

Protocol	etherneti
Transport protocol	unknow

Destination	
Zone	Undefined
Label	n.a.
IP	192.168.10.17
MAC	00:00:bc:5e:ec:e4
Port	n.a.
Roles	producer
Types	controller
Users	0

192.168.20.12

Alerts

6f3cb5f9 SIGN:OT_DEVICE-STOP

Echtzeit-Warnungen zu verdächtigen Aktivitäten und Bedrohungen in OT-Netzwerken

192.168.10.17

#5 (No) Patch-as-Religion

vom No-Patch zur Über-Patch-Panik

No-Patch / Paralyse

- Air-gap/Proprietär schützt uns
- OEM verbietet Patch = Hände gebunden
- Ausnahme ersetztPatch

Riskwashing

- Excel stattUmsetzung
- Virtual Patch reicht dauerhaft
- Exposure = nur Internet
- Kein Testbed ⇒ keine Changes

Patch-Reflex

- CVSS = Priorität
- Alles sofort patchen
- Patch = Security
- Zero-Day-Panik
- IT=OT
- Patch Tuesday & Scanner 1:1 in OT

Asset Illusion, One-Policy-fits-all, Big Bang Patchen, Rollbäck Märchen, Versions-Tunnelblick, Scan-Unbedenklichkeit, Agent-überall

OT-"Mega-GAUs

Das Einfallstor ist selten eine einzelne, nicht gepatchte OT-CVE, sondern Entscheidungen, Annahmen

Stuxnet 2010

- "Air-Gap ist sicher"
- USB/Wechselmedien ignoriert.

Deutsches Stahlwerk 2014

- IT

 OT nicht strikt getrennt
- Phishing auf IT sei "kein OT-Risiko"

BlackEnergy/KillDisk 2015

- Vertrauen in legitimen Remote-Zugang
- Air Gap im Kopf

CrashOverride/Industroyer 2016

 IT/OT-Trennung und Protokoll-Sicht unterschätzt

TRITON/TRISIS 2017

- Safety-System ist unantastbar
- unzureichende Segmentierung/Engineering-Zugriffe

Oldsmar 2021 Colonial Pipeline 2021

 Fernzugriff mit gemeinsamem Passwort ohne MFA ist praktisch

Die Gleichung der Wahrheit (OT-Security)

OTSec(t) = Fortschritt (t) - Stillstand (t) - Risiko(t) - Nebenwirkung(t) | Rahmenbedingungen

OT Security in Epochen

Wie sich Fortschritt, Stillstand, Risiko und Nebenwirkungen im Lauf der Zeit verschoben

Zeitraum	Fortschritt	Stillstand	Risiko	Nebenwirkung	Rahmenbedingungen (Öko/Reg/Org)
bis ~1975	•			•	Safety/Org stark, Cyber irrelevant
1975–1995	1 (Automatisierung)	•	1	•	Org: Security nicht vorgesehen
1995–2009	↑↑ (IT in OT)	1 (Schulden)	11	1	Öko kostentreibend, Reg gering
2010–2014	↑ (ICS-Controls)	1	11	1	Erste KRITIS-Regeln, Org erwacht
2015–2019	11 (Architektur, 62443)	1	1	↑ (Tool-Zoo)	Reg/Standards zunehmen
2020–2022	↑ (Zero Trust, MFA)	1	111	† †	Öko volatil, Org unter Druck
2023–heute	↑↑↑ (Resilienz, All- Hazards)	(kompensiert)	hoch, beherrschbar	balanciert	Reg stark (NIS2), Org reift, Business- Alignment
		Legacy	Journey		

Alt, kritisch, verwundbar – warum Legacy-OT uns alle betrifft

Cyber-Security

Diese Systeme wurden nie fürs Internet gebaut.

Sie sind offen – weil niemand je eine Firewall geplant hat.

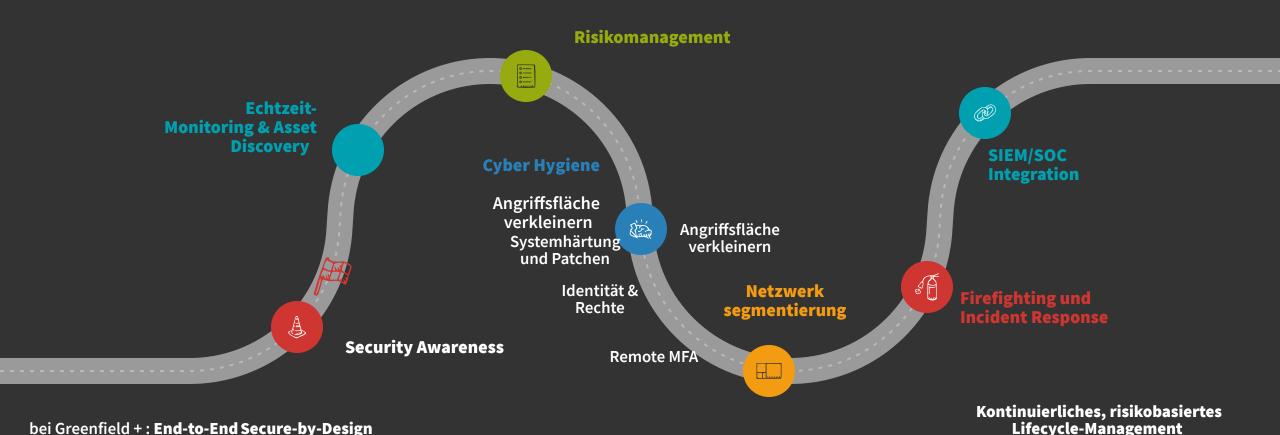
Ein Fehler kann in Sekunden ganze Prozesse kippen. Es gibt keinen zweiten Versuch. Kein Zurück

🔄 Verfügbarkeit

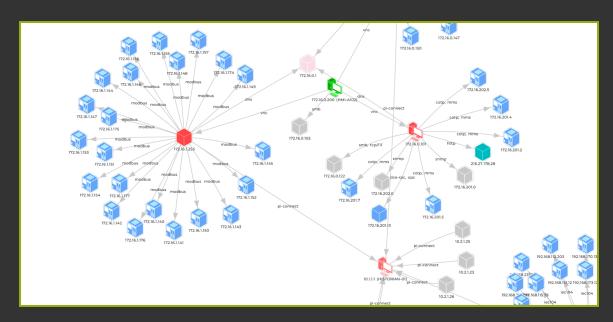
Stillstand ist keine Option.

Aber: Patches können genauso gefährlich sein wie Angriffe.

Ökonomie & Regulierung


Ersetzen? Kaum leistbar.

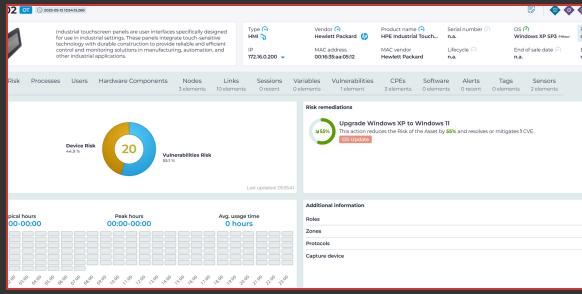
Absichern? Pflicht – aber mit alten Mitteln gegen neue Bedrohungen.


"Legacy-OT ist das Rückgrat der Industrie. Aber ohne Schutz wird genau dieses Rückgrat zum Schwachpunkt."

IKARUS OT Security Journey

IT→OT-Angriffe stoppen wir nicht mit Technik allein – sondern mit einem strukturierten Sicherheitsweg.

Wohin geht die Reise bei IKARUS und Nozomi



Läuft lokal. Erkennt Gefahren direkt vor Ort.

- → KI lernt mit Heuristik & unüberwachtem Lernen.
- → Erkennt Muster, die klassische Regeln übersehen

Beispiele: Cloud-trainierte Modelle liefern Bedrohungswissen. Adaptive ML passt sich live an neue Angriffe an.

SaaS - ab Q1/2026

Egdge und Cloud-basierte Analyse, Priorisierung und Management.

- → KI bewertet Risiken, priorisiert Alarme automatisch.
- → Optional: Zeitreihen-Analysen, Asset Intelligence, Co-Pilot für Queries.

"Edge sichert lokal – Cloud sieht global."

Gemeinsam bilden sie ein lernendes, verteiltes Nervensystem.

Absicherung der Steuerungstechnik - OT Security 2025

Kleine digitale Ursachen erzeugen große physische Folgen.

Wir begrenzen Eintritt, Ausbreitung und Erholungszeit.

Warum jetzt? (All-Hazards nach NIS2)

- Alle Ursachen zählen: Fehler, Update, Lieferant, Manipulation, Angriffe, ...
- Seitwärtseffekte aus Büro/Cloud-Systemen: Identität/Namen/Zeit/Zertifikate als versteckte Single Points; Gebäude- & IoT-Systeme als Brücken.
- **Systemdynamik:** Enge Kopplung & Echtzeit ⇒ ein falsches Signal stoppt Linien oder verschiebt Grenzwerte.

80/20-Maßnahmen (betriebsschonend)

- **Trennen:** Zonen mit klaren Übergängen; nur Nötiges darf durch.
- Zugänge steuern: ein Einstiegspunkt, Mehrfaktor, zeitlich begrenzt, protokolliert.
- **Beobachten: passiv** und ereignisbezogen (z. B. Projekt-Downloads, neue Assets, Verbindungen, Warnungen etc.).
- Schnell wieder anlaufen: Offline-Backups, "Golden Images", regelmäßig testen.

(Resilienz = degradieren statt ausfallen • Betriebskontinuität = realistische RTO/RPO • Incident Response = klare Rollen & Übungen)

Geschäftlicher Nutzen

- Weniger ungeplante Stopps & Ausschuss
- Sichere Betriebszustände (Menschen/Umwelt)
- Schnellere Erholung nach Störungen
- Prüfbare NIS2-Konformität & Versicherbarkeit
- Planbarkeit: Ein Stillstandstag kostet meist mehr als ein Jahr Basis-Kontrollen

Management

- Verantwortliche & Budget bestätigen
- Lieferantenregeln mit Nachweisen (MFA, zentraler Einstieg, saubere Wartungsgeräte)
- Üben & Messen per KPI.

Fazit

- + Relativ leicht zu schützen weil sie statisch ist.
- Abhängigkeiten bleiben:, kein Null Risiko
- Umsetzung kostet Disziplin und Ressorucen
- Technische Schulden steigt mit den Alter der Anlagen

OT Security gelingt, wenn wir

Denkfehler abbauen

Risiken beherrschen

Fortschritt messen und nutzen

Nebenwirkungen balancieren

Stillstand kompensieren

Wirtschaft, Regulierung und Organisation einbeziehen

