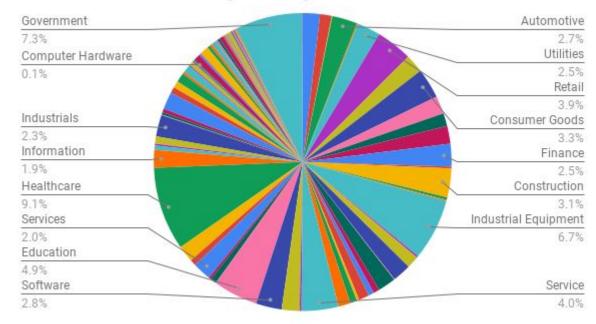
The value of (missing) security.

Éireann Leverett @blackswanburst

Data>Dogma

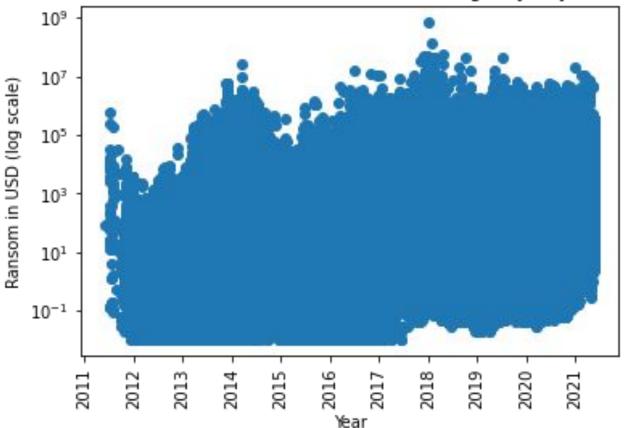

Q: Who gets hacked?

Everybody!

Image credit: an excellent twitter thread [1] on ransomware "targeting".

Hat-tip @uuallen

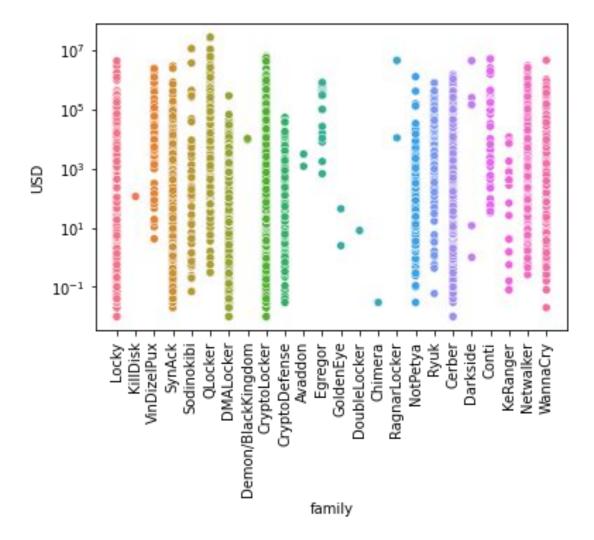
Ransomware Attacks by Industry 2020 and 2021


Q: How do we know how much to spend?

Initial access brokers are willing to spend up 100k for access to 100 M dollar companies in the USA, averaging around 50k when doing so[1].

Sodinokibi \$40,444,185.64 SynAck \$10,326,036.84 Netwalker \$152,673,811.19 CryptoLocker \$1,223,971,042.45 Locky Cerber \$309,089,708.06 \$79,441,060.73 OLocker \$663,817,894.46

Ransom Sums by Family (USD)


This is what ransomware looks like if you take the long and log view of a decade of activity.

A decade of BTC ransoms is not an emergency anymore.

So are some families more impactful than others? Are they capable of fetching bigger ransoms?

How do they determine their initial ransom price?

5% of ARR

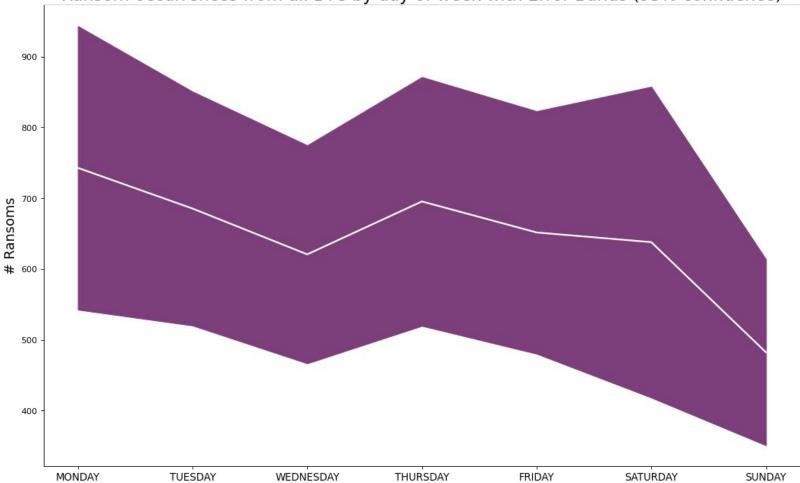
General trend in negotiating[3]

10-40%

Of the ransomware insurance claim is the ransom.

10-50% of ARR

This is the cost of a catastrophe.


Q: How frequently are we hit?

Perhaps you don't want to talk about old malware, because it doesn't help you sell new products.

However, I do...because it helps me estimate if we're getting better or worse.

Cerber 6023 Netwalker 1458 Locky 254278 CryptoLocker 722986 SvnAck Sodinokibi OLocker 194 2981 987

Ransom Occurrences by Family

Ransom occurrences from all BTC by day of week with Error Bands (95% confidence)

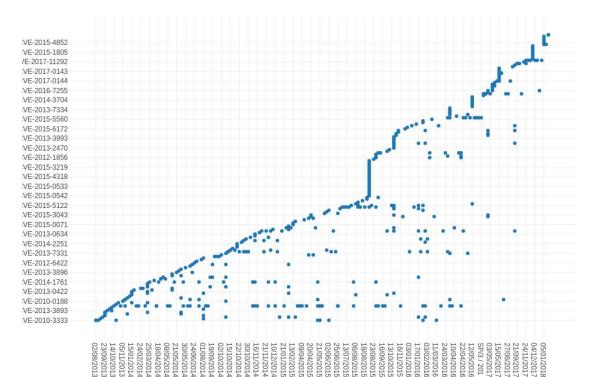
Of companies are hit annually[4]

1.5% of ARR

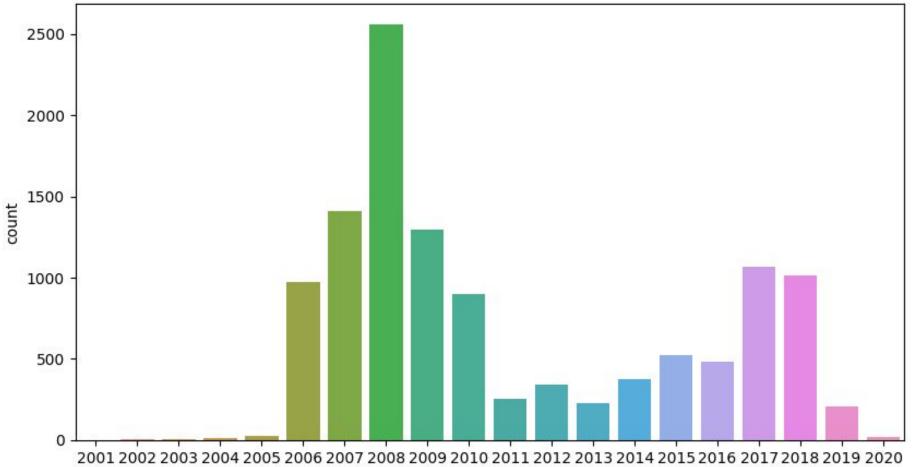
Is a good budget for ransomware prevention!

Q: How do we know if we are doing the right things?

Are you patching the right vulnerabilities?


Only 4% of vulnerabilities have public exploits

Householder, A.D., Chrabaszcz, J., Novelly, T., Warren, D. and Spring, J.M., 2020. Historical analysis of exploit availability timelines. In 13th {USENIX} Workshop on Cyber Security Experimentation and Test ({CSET} 20). Of those with public exploits, 80% have the exploit published (23 days) before the CVE


Chen 2020,

https://unit42.paloaltonetworks.com/state-of-exploit-deve lopment/ This graph is essentially what I learned as a penetration tester of industrial systems and critical infrastructure over the 4 years of my youth.

CVEs with exploits in ExploitDB according to MITRE 11696 total

Exploit Prediction Scoring System @ FIRST.org

Top rated CVEs from the last ninety days

We selected the 48 highest rated CVEs published in the last 90 days. They are shown here with the CVE and EPSS score.

CVE-2021-34473	CVE-2021-29728	CVE-2021-29702	CVE-2021-21098	CVE-2020-4935	CVE-2021-28596 36.3%
87.6%	79.3%	48.6%	41.8%	37.6%	
CVE-2021-29703 82.7%	CVE-2021-29777 79.3%	CVE-2021-35464 43.6%	CVE-2021-20483 41.7%	CVE-2021-21101 36.3%	CVE-2021-28603 36.3%
CVE-2021-1675 79.9%	CVE-2021-34527 77.8%	CVE-2021-20430 43.2%	CVE-2021-20572 41.7%	CVE-2021-21102 36.3%	CVE-2021-28604 36.3%
CVE-2021-20560 79.3%	CVE-2021-36004 76.3%	CVE-2021-29766 43.2%	CVE-2021-20573 41.7%	CVE-2021-28586 36.3%	CVE-2021-28606 36.3%
CVE-2021-29736	CVE-2021-20562	CVE-2021-29767	CVE-2020-4902	CVE-2021-28589	CVE-2021-28607
79.3%	75.3%	43.2%	41.7%	36.3%	36.3%
CVE-2021-20579	CVE-2021-29754	CVE-2021-29784	CVE-2021-34523	CVE-2021-28590 36.3%	CVE-2021-28608
79.3%	75.3%	43.2%	41.5%		36.3%
CVE-2021-29722	CVE-2021-36934	CVE-2021-29951	CVE-2021-29712	CVE-2021-28591	CVE-2021-28610 36.3%
79.3%	70.4%	41.9%	37.6%	36.3%	
CVE-2021-29723 79.3%	CVE-2021-29725 54.3%	CVE-2021-21090 41.8%	CVE-2020-4675 37.6%	CVE-2021-28592 36.3%	CVE-2021-28620 36.3%

Source: https://first.org/epss/data_stats, 2021-09-06

Q: How do we know how effective those treatments are?

Using counter factuals to understand impact

Sometimes you have to invent the scale of the harm first.

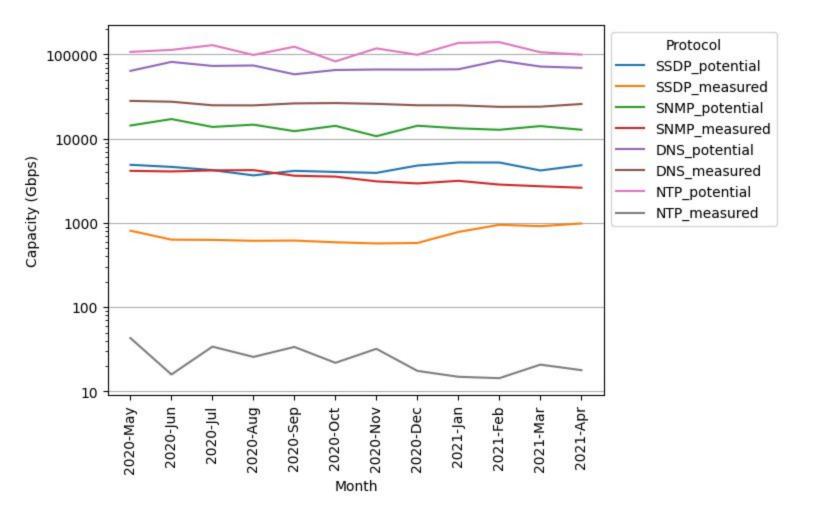
233 Views

4

CrossRef citations

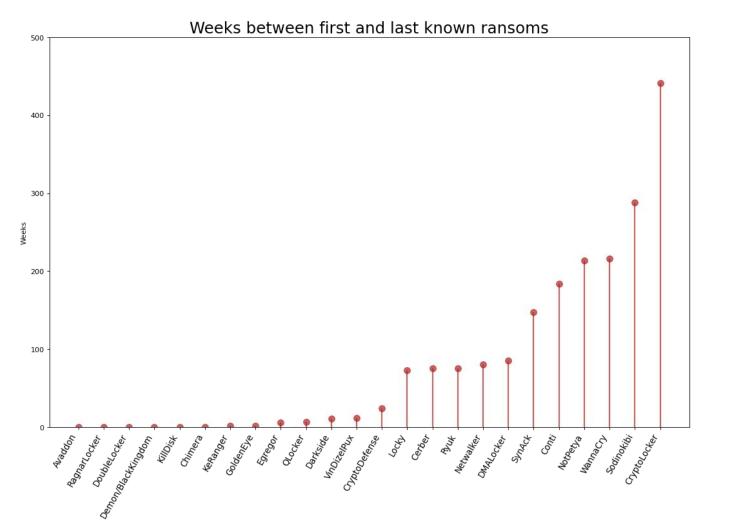
18 Altmetric

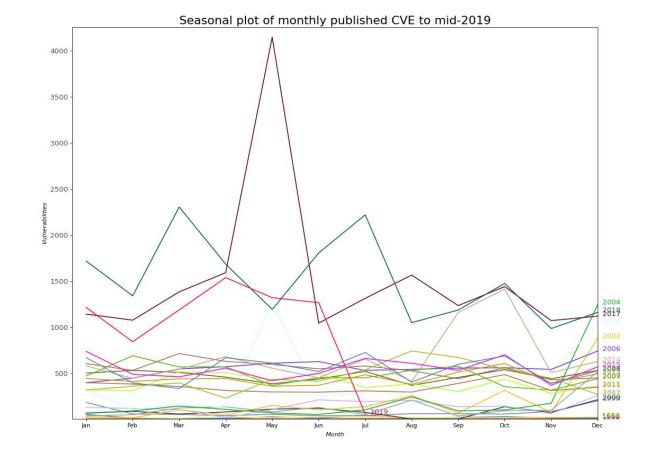
Original Articles


Towards estimating the untapped potential: a global malicious DDoS mean capacity estimate

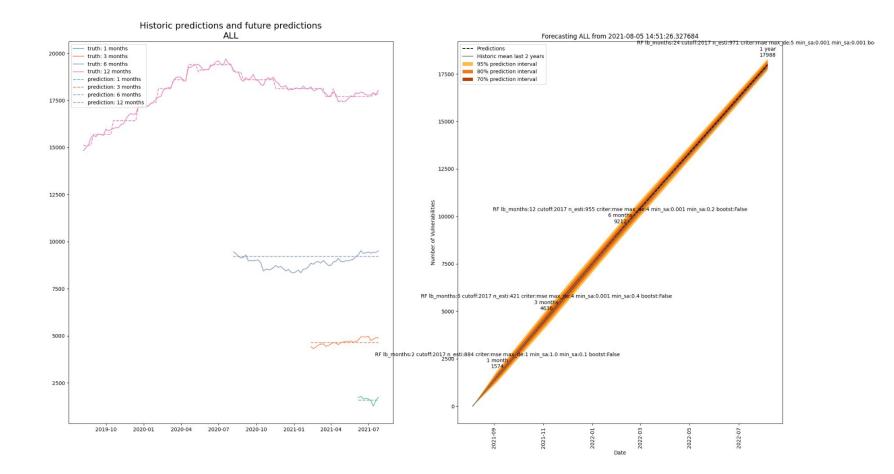

Eireann Leverett 🔽 💿 & Aaron Kaplan

Pages 195-208 | Received 18 Apr 2017, Accepted 27 Jul 2017, Published online: 21 Aug 2017


66 Download citation **2** https://doi.org/10.1080/23738871.2017.1362020



Q: A short crisis for you, business as usual for criminals?


Q: What if we could get ahead of the problems?

DATA > DOGMA

WULMECAST: WHY WAIT FOR ZERODAY?

Q: If we did all that and there's residual risk, is this actually a public health problem?

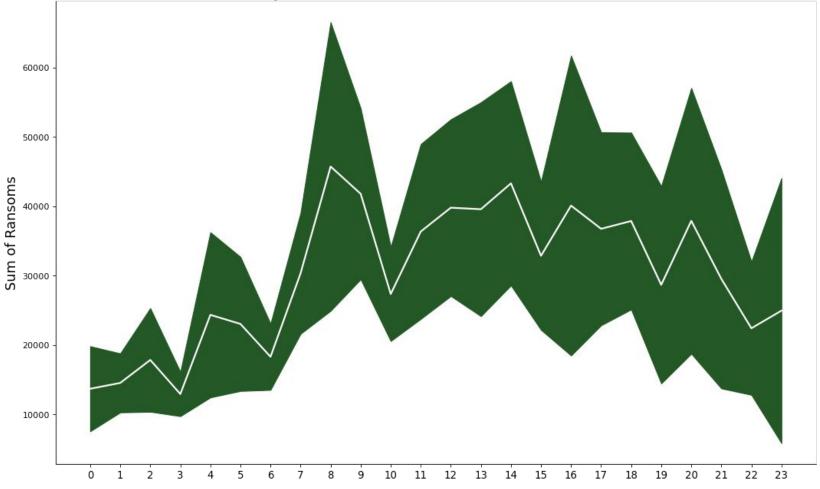
Averages don't characterise the heavy tails of ransoms

1st Éireann Leverett Founder of Concinnity Risks Cambridge, United Kingdom eleverett[AT]concinnity-risks.com

4th Ankit Gangwal University of Padua, Italy ankit.gangwal[AT]phd.unipd.it 2nd Eric Jardine Assistant Professor Department of Political Science, Virginia Tech Blacksburg, United States ejardine[AT]vt[DOT]edu 3rd Erin Burns Founder of Concinnity Risks Cambridge, United Kingdom eburns[AT]concinnity-risks.com

5th Dan Geer Senior Fellow In-Q-Tel dan[AT]geer[DOT]org

So how big is the ransomware industry?


\$10,909,589,702

(if they cashed out daily at AVG price)

\$492,967,698,285

(if they cashed out daily at BTC ATH)

Ransom sums hourly from named families with Error Bands (95% confidence)

Thank you!

@blackswanburst

SOLVING CYBER RISK

PROTECTING YOUR COMPANY AND SOCIETY

ANDREW COBURN . ÉIREANN LEVERETT . GORDON WOO

WILEY

References and Footnotes

[1] https://mobile.twitter.com/uuallan/status/1400597409701548033

[2] <u>https://ke-la.com/the-ideal-ransomware-victim-what-attackers-are-looking-for</u>

[3] https://www.advintel.io/post/the-rise-demise-of-multi-million-ransomware-business-empire/

[4] https://www.usenix.org/conference/soups2019/presentation/simoiu