

Hacking COMBUS in a
Paradox security system

How reversing the COMBUS protocol
resulted in breaking security
of a security system

16.11.2018.
IT-SECX 2018, Austria

Author
● Lead researcher at Possible

Security, Latvia
● Hacking and breaking things

– Network flow analysis
– Reverse engineering
– Social engineering
– Legal dimension

● twitter / @KirilsSolovjovs

INTRO

Paradox security systems
● Canadian company, founded 1989
● Modular security alarms

– SPECTRA SP
● Expandable Security Systems

– EVO
● High-Security & Access Systems

– MAGELLAN
● Wireless Security Systems

Prior research
● Work on interfacing with SP series via COMBUS

– Martin Harizanov
● partially working code, moved on to SERIAL

● Work on interfacing with MG series via SERIAL
– All over forums

● leaked docs

– Gytis Ramanauskas
● code on github

Responsible disclosure process
● At first:

– General claim that there’s a vulnerability met with doubt
– Clearly no process in place

● In a few of months:
– The information has been “dealt with”
– For obvious security reasons, it is our policy to never discuss engineering matters

outside of the company and thus we will not be commenting further on this issue

● Now doing public disclosure a couple years later

¯_(ツ)_/¯

Components
● zone interrupt devices
● PGM modules
● serial devices
● ancillaries

Components
● combus slaves

provide two-way communication
– keypads
– modules

● expansion
● printer
● listen-in
● etc.

Components
● master

heart on the system – “motherboard”
– panel

16.5 V ⏦

12 V ⎓
battery

COMBUS

RTC 3V
battery

RS485

memkey

voice dialerEVO192

REVERSE ENGINEERING

Hardware tools
● Saleae Logic 8 ● Arduino UNO

COMBUS

Electrical layer
● combus – 4 wire bus
● resistance = 0 black = GROUND⇒

● stable voltage⎓ red = POWER⇒

● ... ?

(keypad)

Signal layer
● yellow = CLOCK
● green = DATA
● 40ms between packet bursts
● 1 clock cycle = 1ms; signal = 1kHz

Signal encoding
● CLOCK = low data!!! ☺⇒

● ... we should have two-way comms
something is missing ☹

0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 1

0 C 9 1 2 D 2 1

Full signal encoding
● CLOCK = high

– slave pulls down to send “1”

● CLOCK = low
– master pulls up to send “1”

-----M-M-M-M-M-M-M-MsM---

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

master
40 03 92 02 01 EB 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 C4 00
E2 14 10 0B 0F 37 05 00 01 5D 00
0C 13 38 1B

slave
00 02 20 00 00 00 FF 5A 22 00 00 00 00 D5 23 79 E2 00 00 00 C8 B6 00
00 02 00 00

command checksum unused channel-request

Packet structure

checksum – SUM mod 0x100, starts at command

Commands: heartbeat / clock
● 0C AA 10 11
● 0C NN DD/MM HH/SS

– NN = xxxxxxxp = sequence number

● p==0 => 0C NN DD HH
– DD = day of the month
– HH = hour

● p==1 => 0C NN MM SS
– MM = minutes
– SS = seconds

Commands: code entry
● 00 02 20 00 00 00 FF 12 34 00 00 00 00 D9 10 3A 99
00 00 00 00 21 00

● 00 02 20 UT 00 00 CT CC CC 00 00 00 00 SS SS SS SS
00 00 00 00 =# 00
– UT = pxxxxxxx

● p = user type == 1 => programmer

– CT = code type
– CC CC = code (oh, check this out, it looks like a code)
– SS SS SS SS = serial number of source device
– =# = checksum

12 34

Payloads
● No encryption used
● Text as fixed length (often 16 chars) ASCII strings

– 0x20 = filler

● Numbers usually packed BCD
– “0” is 0b1010 = 0xA
– no encryption, but hey, at least we got obfuscation!

DEMO TIME
Before connecting a module to the combus, remove
AC and battery power from the control panel.

3998 3111 9309 1400
8248 4584 9450 5617
6550 8245 6979 9878
6101 4971 1294 9576
5005 2789 7113 3627
6856 5132 4920 5076
7500 7065 0643 9302
1744 3725 8432 1275
1128 1497 8657 9264

 7113

Exploitation scenarios

SUMMARY

Results
● Hardware built, decoding software written
● Protocol partially transcribed

Solutions
● Encryption at command layer

– TLS
– CA in trust-store in all components

● Mutual slave-master authentication
– client certificates

● Sensitive payload encryption
– with unique per-panel key (synchronized at install time)

Further research
● Anti-collision protocol research
● DoS attacks
● Emulating a slave
● COMBUS over radio
● RF attacks
● Firmware reverse engineering

Resources
● Slides available

– http://kirils.org/

● Tools available on 18th November
– https://github.com/0ki/paradox

Hacking COMBUS in a
Paradox security system

How reversing the COMBUS protocol
resulted in breaking security
of a security system

16.11.2018.
IT-SECX 2018, Austria

http://kirils.org/ @KirilsSolovjovs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

