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Man At The End Attacks

assets in software 
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with enough time
any protection 
can be broken
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Software Protections
• Two fundamental problems

• related code is grouped
• each code fragment implements only 

one semantics

• This eases attacker's job
• identifying interesting fragments
• code comprehension
• tampering
• overcoming protections

• Our solution
1. code layout randomization
2. inserting fake edges
3. deduplicating code fragments
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1) Code Layout Randomization

• Simple at function level
• with standard linker and compiler

• Relatively weak
• units of computations (functions) still intact
• direct function calls still reveal relations

• Improvement
• replace direct calls by indirect obfuscated ones
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1) Code Layout Randomization

• Harder at basic block level
• requires (post) link-time code rewriter

• Still relatively weak
• recursive descent disassemblers 
• so can regroup basic blocks into functions

• Improvement
• replace direct jumps by indirect ones

• Limitation
• hides information but does not mislead the attacker



2) Opaque predicates 
• Insert interprocedural fake direct CF edges

with intraprocedural CF idioms

• Attacks are still possible
• detect opaque predicates

• pattern matching
• abstract interpretation
• symbolic execution

• detect invariant behavior
• generic deobfuscation

• Each fragments still implements only one semantics



2) Opaque predicates

more, coupled
fake edges!

• Insert interprocedural fake direct CF edges
with intraprocedural CF idioms

• Attacks are still possible
• detect opaque predicates

• pattern matching
• abstract interpretation
• symbolic execution

• detect invariant behavior
• generic deobfuscation

• Each fragments still implements only one semantics



• So far, different components are 
not connected by true CF edges



3) Code deduplication

• So far, different components are
not connected by true CF edges

• Now components are connected by true edges
• Now code implements multiple semantics
• Now outgoing edges can both be taken
• If both are covered, we have variant behavior



Prototype Implementation
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register pressure locally. Concretely, this means we have to
inject glue code in the form of register transfer instructions
such as move, copy, swap, and spills to memory around
the fragments. Foremost, we need to check whether we can
actually perform the required rewriting within the capabil-
ities (available transformations and analysis precision) of
the link-time rewriter. As different dispatchers come with
slightly different requirements, we also need to check which
dispatchers can be used for which sets.

Figures 5, 6, and 7 illustrate the required transformations
with 32-bit ARMv8 code. The selected slices are marked in
bold in Figure 5. They have been rescheduled into separate
blocks in Figure 6. To enable the factoring already applied in
Figure 7, the differences in immediate operands and register
allocations have been overcome by inserting a number of
move and swap operations in blocks 1b, 2a, and 2b. The
dispatcher in block 3b is a simple conditional branch. In
the first instruction of block 2a, the controlling register r9
is set to zero, to control and enable the execution path 2a-
3a-3b-2b. For controlling and enabling the path 1a-1b-3a-3b-
1c, register r9 does not need to be set to a specific value.
Instead, the fact that r9 is used as a base address in the store
preceding slice 1 is relied upon: as user applications have
no data mapped onto the lowest page in virtual memory,
we can assume that r9 will be non-zero in the code following
the store. This assumption is optional and can easily omitted
in scenarios where it would not hold, such as kernel code.

To test whether sufficient glue code can be generated
to make a fragment set actually factorable, we use a bi-
directional, context-sensitive interprocedural liveness anal-
ysis [32]. To identify already available constants as input to
dispatchers, we perform a flow-sensitive, context-sensitive
(k-depth with k=1) constant propagation analysis [33]. On
top, we developed a simple flow-sensitive, context-sensitive
(k-depth with k=1), bidirectional, interprocedural non-zero
analysis that tracks which registers hold values that are
definitely non-zero. As these data flow analyses operate at
the level of executable code, where useful alias information
is sparse [34], they only analyze data in registers.

The constant analysis and the non-zero analysis allow
us to reuse values that already have semantic relevance in
the original program to control the dispatcher. If, for some
factored fragment, this is the case for more than one of the
contexts from which the factored fragment was extracted,
the dispatcher is then controlled by semantically relevant
data originating from more than one execution context. The
invariants that held in those original contexts in isolation
likely do not hold in the merged context after factoring. We
conjecture that this makes code comprehension harder. It
also ensures that de-obfuscation techniques based on (quasi-
)invariants will not work on the factored code.

In the example, slice 2’s registers were renamed to those
of slice 1. In many cases, candidate sets consist of more
than 2 slices. Trying out all possible register renamings to
select the best one would increase the code analysis time
significantly, so instead we use a simple heuristic to select
one of the slices as reference slice to which the others are
renamed. This simple heuristic in practice also favors more
likely successful renamings over less likely successful ones.
In slice 1 of the example, the value loaded into r5 by the
second load is live-out. In slice 2, the value loaded into r8

STR r4, [r9, #0x4]
LDR r4, [r13, #0x48]
ADD r7, r7, #0x8
LDR r5, [r13, #0x28]
CMP r7, r4
ADD r12, r5, #0x8
STR r12, [r13, #0x28]
MOV r7, r5
BNE (…)

LDR r7, [r13, #0x88]
LDR r8, [r13, #0x70]
CMP r12, r7
ADD r8, r8, #0x1
STR r8, [r13, #0x70]
BGE (…)

1
2

Fig. 5: Factoring candidate slices in bold in their respective
basic blocks

Fig. 6: Split factoring candidate slices

by the corresponding load is overwritten by the add. So an
allocation like that of slice 2 cannot replace that of slice 1.
In our simple heuristic, we count the number of different
registers occurring in the original fragments, and we pick
the one with the highest number as reference fragment. In
case the heuristic does not favor one fragment over the oth-
ers, and when (optional) profiling information is available,
we pick the fragment with the highest execution count as
reference fragment.While these simple heuristics are clearly
not optimal, they provide a good balance between analysis
time, performance and size overhead, and success ratio of
the transformations.

5.3 Selection Order

Instructions can be present in multiple factoring candidate
sets, but each instruction can only be factored once. Fur-
thermore, factoring a set of fragments changes the data
flow properties in the surrounding code, e.g., by making
previously dead registers containing non-zero or constant
data live, so one factoring can impact the potential of
another candidate one. The order in which we select and
apply actual factorings is therefore important.

The selection order also needs to strike a balance be-
tween the level of protection and obfuscation speed. The for-
mer requires a global optimization and decision process that
considers all potential candidate sets. However, that would
require too much computation time. The potential candi-
date sets can be very large, up to hundreds of fragments,
especially for small fragments of one or two instructions.
The larger subsets thereof are typically not actual factoring
candidates because our local register renaming technique
is not powerful enough to overcome the differences in
data flow properties of all the fragments surroundings. For
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ADD r7, r7, #0x8
CMP r7, r4
MOV r7, r5
BNE (…)

CMP r12, r7
BGE (…)

CMP r9, #0x0
BEQ (2b)

MOV r9, #0x0
MOV r14, #0x70
MOV r11, #0x1
MOV r10, #0x88
MOV r7, r12
B (…)

SWAP r7, r4
SWAP r8, r12
SWAP r12, r4

LDR r4, [r13, r10]
LDR r5, [r13, r14]
ADD r12, r5, r11
STR r12, [r13, r14]

MOV r14, #0x28
MOV r11, #0x8
MOV r10, #0x48
B (…)

1c

2c

1b

2a

2b

3a

STR r4, [r9, #0x4]1a

3b

Fig. 7: Factored slices

smaller candidate subsets, the renaming is much more likely
to succeed. Our approach hence starts from small candidate
sets, that we expand as much as possible, i.e., as long as the
estimated protection value increases.

5.3.1 Priority Function
To order and compare candidate sets in terms of protection
value, we need to consider measurable features (i.e., met-
rics) that contribute to the potency, resilience, and stealth of
factoring them. We propose the following ones:

1) the fragment size as their number of instructions;
2) the numbers of archives, object files, and functions

from which the fragments come;
3) the numbers of archives, object files, and functions

in which fragments were observed to be executed
for at least one input, as determined by (optionally)
profiling or fuzzing;

4) the possible dispatchers, and, if applicable, the al-
ready available constants or non-zero values.

The first metric is prioritizes larger code fragments over
smaller ones. We conjecture this is useful because factoring
larger fragments results in more semantics being merged
from different contexts, thus increasing the potency of a
factoring transformation. It can also be useful for stealth,
as it allows for better mixing of the injected dispatcher
code with the factored code. Finally, it can contribute to the
resilience against certain attacks. For example, undoing a
factoring transformation by statically rewriting the code is
more difficult when more instructions need to be re-inserted
in the contexts from which they were factored.

The second metric, which actually consists of three
metrics, contributes to potency. Assigning higher value to
factorings of unrelated fragments originating from multi-
ple object archives, object files, or functions, allows us to

prioritize candidate sets that break proximity-based attack
heuristics and that obfuscate component boundaries.

The third metric, again a set of three metrics, relates to re-
silience against dynamic attacks that build on observations
of executions of the software under attack. These metrics
allow us to prioritize candidate sets of which the effect of
factoring them on the reconstructed CFGs cannot be undone
by omitting edges and nodes that the attacker cannot trigger
during dynamic attacks and by then simplifying the remain-
ing code, as is done in the generic de-obfuscation attack by
Yadegari et al. [20].

The fourth metric allows to consider the potency, re-
silience, and stealth of the different types of dispatchers:
some are harder to analyze but not very stealthy (e.g.,
dynamic switch dispatchers), others are stealthy in the
sense that they ressemble already occuring fragments in the
original programs (e.g., conditional jumps). Some are more
resilient to automatic de-obfuscation, others are less so. The
different dispatchers are discussed in Section 5.4.

The metrics can be combined in a priority function in
various ways: in weighted sums, in decision trees, etc. They
can also be combined with profile information to give lower
priority to fragments on frequently executed code paths
to minimize the performance impact of the factorings. The
definition of the best priority function is out of the scope of
this paper. Importantly, a user of our protection tool chain
can customize it depending on his use case at hand, taking
into account the security requirements of the software assets
at hand (confidentiallity, integrity, ...), a risk assessment of
different attack scenarios, and the performance budget.

5.3.2 Selection and Actual Factoring
Our factoring algorithm consists of two phases.

At the start of the selection phase, we perform the already
mentioned data flow analyses. Then a list of initial factoring
candidates is assembled, ordered by their protection value.
This list includes sets of fragments that are actual factoring
candidates in the untransformed program. In other words,
the data flow properties of the original program meet the
necessary pre-conditions to apply the factoring transforma-
tions. No factorings are applied yet, however.

To decide on the initial candidate sets to add to the list in
the selection phase, we implemented an iterative algorithm
that is applied to each of the potential candidate sets. For
each such set, the algorithm starts by marking pairs of
fragments that can be factored, i.e., pairs for which register
renaming can be performed and at least one dispatcher can
be generated. Using the priority function to sort all possible
pairs in terms of protection value, we select the best starting
pair as the seed set. Next, we iteratively try to expand the
seed set. In each iteration, we add the one fragment from the
potential candidate set that results in the biggest increase in
protection value. This continues as long as the protection
value increases. The final expanded set is then added to
the list of actual factoring candidates, in which we also
keep track of the possible dispatchers, available constants
or non-zero values, and other useful information to steer the
dispatcher. The fragments in the expanded set are removed
from the potential candidate set, and the whole process is
repeated with other seeds until no sufficiently valuable seed
sets can be found anymore.
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Fig. 10: Fraction of all instructions that get factored from within the indicated number of archives
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Fig. 11: Fraction of all instructions that get factored from within the indicated number of object files
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Fig. 12: Fraction of all instructions that get factored from within the indicated number of covered slices/sequences
(irrespective of additional uncovered slices/sequences)

74% of the fake edges (75–76% for other benchmarks), of
which more than half connect blocks from different archives.
Furthermore, the GUI does not draw 56% of the true edges
(53–56% for other benchmarks). As a result of the obfusca-
tion, IDA Pro also gave up on about 28% of the identified
instructions (23–31% for the other benchmarks), and simply
did not put that code in any function. Obviously this also
contributes to the FN rates.

Notice how these total numbers are comparable for
different benchmarks, despite their different constitution.
This is of course due to the fact that the totals do not
depend on the number of archives or object files making
up the programs. For the intra- and interarchive FPs, the
rates vary more from one benchmark to another, but they
are still comparable. For example, the GUI IA FPR with IDA
Pro out-of-the-box ranges from 39% to 55%. All numbers
are available in the technical report [?]. This relatively small

variation implies that the obtained potency ports rather well
from one benchmark to another, which is of course beneficial
for users of tools that implement the obfuscations, as it
will limit the need to retune the tool configuration for each
benchmark.

At first sight, it might seem strange that there are also
intra-function GUI FPs, since we never purposely inject fake
intra-function edges. Those FPs are a side-effect, however, as
they correspond to the never executed fall-through paths of
injected switch dispatchers, which are intra-function in our
prototype.

Table 5 shows that an attacker-improved IDA Pro puts
almost all code into functions. The FP rates go up as a result,
and the FN rates drop significantly. Different versions of
the repartitioning algorithm never got significantly better
results than the ones reported here. Without more advanced
data flow analysis or other attacks to identify fake edges,

stacked colours: number of different components involved in deduplication

all instructions are taken into account
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Fig. 14: Heatmap dissecting the applicability of factoring on the SLM benchmark, showing the number of fragments
(color) of size (minor, top X-axis) in sets covering (major, bottom X-axis) archives versus the number of covered archives
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Fig. 15: Instructions reachable from function entry points in different numbers of archives/object files/functions, before
(left bars) and after (right bars) factoring (SLM).

those edges simply confused the disassembler’s code parti-
tioning strategies. The proposed protections thus display a
significant amount of practically relevant potency.

The above results and in particular the FNs are to some
extent inherent to IDA Pro, which can put each basic block
in only one function. For the example of Figure 7, at least
one of the incoming edges of block 3a and one of the
outgoing edges of block 3b inherently become FNs. So addi-
tionally, we measure how many (source, sink) pairs of code
fragments that were split apart by factorization (e.g., pairs
(1a,1b) and (2a,2b) in Figure 6) are correctly put in the same

function by IDA Pro. The results are presented in the bottom
left parts of the tables. Most importantly, the results in
Table 5 indicate that even with the repartitioning heuristics,
the vast majority (85%, 85–88% for the other benchmarks)
of related block pairs are not put in the same function.
There are two reasons: First, when the factoring is applied
as frequently as we applied it, many non-factored fragments
end up in between two factored fragments, and thus are
no longer connected directly to any non-factored fragment.
Secondly, even if we drop the frequency of factoring to a low
number (such as 1% of all factorizable cases), the number

stacked colours: number of different components involved in deduplication

all instructions are taken into account

contexts

only executed
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Fig. 14: Heatmap dissecting the applicability of factoring on the SLM benchmark, showing the number of fragments
(color) of size (minor, top X-axis) in sets covering (major, bottom X-axis) archives versus the number of covered archives

(Y-axis) in that set
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Fig. 15: Instructions reachable from function entry points in different numbers of archives/object files/functions, before
(left bars) and after (right bars) factoring (SLM).

those edges simply confused the disassembler’s code parti-
tioning strategies. The proposed protections thus display a
significant amount of practically relevant potency.

The above results and in particular the FNs are to some
extent inherent to IDA Pro, which can put each basic block
in only one function. For the example of Figure 7, at least
one of the incoming edges of block 3a and one of the
outgoing edges of block 3b inherently become FNs. So addi-
tionally, we measure how many (source, sink) pairs of code
fragments that were split apart by factorization (e.g., pairs
(1a,1b) and (2a,2b) in Figure 6) are correctly put in the same

function by IDA Pro. The results are presented in the bottom
left parts of the tables. Most importantly, the results in
Table 5 indicate that even with the repartitioning heuristics,
the vast majority (85%, 85–88% for the other benchmarks)
of related block pairs are not put in the same function.
There are two reasons: First, when the factoring is applied
as frequently as we applied it, many non-factored fragments
end up in between two factored fragments, and thus are
no longer connected directly to any non-factored fragment.
Secondly, even if we drop the frequency of factoring to a low
number (such as 1% of all factorizable cases), the number

distribution without deduplication

distribution with deduplication
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TABLE 3: Potency metrics for SLM without the protections proposed in this paper.

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FPR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
# FN 1.8k 24 618 753 1.8k 1.2k 1.1k 916 0 45 48 916 871 868
FNR 3% 0% 1% 1% 3% 2% 2% 1% 0% 0% 0% 1% 1% 1%

Pairs of fragments split by factorization

Total Wrong Correct
0 0 (0%) 0 (0%)

CFG edges

Total True Fake Drawn in GUI
67.2k 67.2k (100%) 0 (0%) 65.3k (97%)

Instructions

Total Functionless
281.8k 4.0k (1%)

TABLE 4: Potency metrics for a fully protected SLM with IDA Pro out-of-the-box.

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 16.5k 9.6k 12.5k 12.6k 6.9k 4.0k 3.9k 20.0k 11.8k 16.0k 16.0k 8.2k 4.0k 3.9k
FPR 74% 43% 57% 57% 31% 18% 18% 90% 53% 72% 72% 37% 18% 18%
# FN 101.4k 24 622 760 101.3k 100.7k 100.6k 63.2k 9 131 165 63.2k 63.1k 63.0k
FNR 56% 0% 0% 0% 56% 55% 55% 35% 0% 0% 0% 35% 35% 35%

Pairs of fragments split by factorization

Total Wrong Correct
28.4k 26.6k (94%) 1.7k (6%)

CFG edges

Total True Fake Drawn in GUI
204.4k 182.2k (89%) 22.2k (11%) 97.4k (48%)

Instructions

Total Functionless
772.3k 213.6k (28%)

TABLE 5: Potency metrics for a fully protected SLM with attacker-improved IDA Pro.

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 17.1k 10.0k 13.0k 13.0k 7.1k 4.1k 4.0k 21.2k 12.6k 17.0k 17.1k 8.6k 4.2k 4.1k
FPR 77% 45% 59% 59% 32% 18% 18% 96% 57% 77% 77% 39% 19% 18%
# FN 74.5k 16 492 588 74.5k 74.0k 73.9k 27.5k 0 17 20 27.5k 27.5k 27.5k
FNR 41% 0% 0% 0% 41% 41% 41% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization

Total Wrong Correct
28.4k 24.1k (85%) 4.3k (15%)

CFG edges

Total True Fake Drawn in GUI
204.5k 182.3k (89%) 22.2k (11%) 124.9k (61%)

Instructions

Total Functionless
772.4k 122 (0%)

TABLE 6: Metrics for a fully protected SLM, after detection and removal of observable opaque predicates (soundish DB
attack).

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 16.4k 9.5k 12.3k 12.3k 6.9k 4.1k 4.0k 21.1k 12.6k 17.0k 17.0k 8.5k 4.2k 4.1k
FPR 74% 43% 55% 56% 31% 18% 18% 95% 57% 77% 77% 39% 19% 18%
# FN 73.4k 13 459 544 73.4k 73.0k 72.9k 27.5k 0 17 20 27.5k 27.5k 27.5k
FNR 40% 0% 0% 0% 40% 40% 40% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization

Total Wrong Correct
28.4k 24.0k (85%) 4.3k (15%)

CFG edges

Total True Fake Drawn in GUI
204.5k 182.3k (89%) 22.2k (11%) 125.2k (61%)

Instructions

Total Functionless
772.4k 122 (0%)

Opaque predicates

Total Resolved
13.3k 29 (0%)

TABLE 7: Metrics for a fully protected SLM, after detection and removal of observable opaque predicates (unsound GUI
attack).

FP/FN CFG edges drawn in GUI FP/FN CFG edges stored in database

Total IA IO IF iA iO iF Total IA IO IF iA iO iF

# FP 14.9k 8.3k 10.9k 11.0k 6.6k 4.0k 4.0k 18.2k 10.3k 14.1k 14.2k 7.9k 4.1k 4.0k
FPR 67% 38% 49% 49% 30% 18% 18% 82% 46% 64% 64% 36% 18% 18%
# FN 73.0k 13 448 526 73.0k 72.6k 72.5k 27.5k 0 17 20 27.5k 27.5k 27.5k
FNR 40% 0% 0% 0% 40% 40% 40% 15% 0% 0% 0% 15% 15% 15%

Pairs of fragments split by factorization

Total Wrong Correct
28.4k 24.0k (85%) 4.4k (15%)

CFG edges

Total True Fake Drawn in GUI
204.5k 182.3k (89%) 22.2k (11%) 124.2k (61%)

Instructions

Total Functionless
772.4k 122 (0%)

Opaque predicates

Total Resolved
13.3k 3.0k (22%)

unsound attack after extending IDA Pro with basic, custom heuristics 
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Fig. 16: Variability of dispatcher execution paths

6.6 Overhead

Obfuscating transformations always come with perfor-
mance and code size overhead. The performance penalty
can be limited by using profile information to stay clear
from the hottest code. As we only proposed a new way
to redirect fake edges of opaque predicates, rather than
introduce new ones which require new code sequences to
be injected, we do not evaluate the performance penalty of
opaque predicate insertion. Instead we focus on the pro-
posed factoring technique, which can involve the insertion
of considerable glue code, and which is hence expected to
have a major impact on performance and code size. Those
impacts are summarized in Figure 17. Solid lines repre-
sent run time overhead, dashed lines code size overhead.
More detailed results and descriptions of the experiments
are available in a technical report [?]. The measured run
times are averages of 5 runs. For the SPEC benchmarks,
we used slightly altered reference inputs to reduce run
times on the (relatively slow) developer boards; for the
SLM benchmark we used a custom input; for the DRM
benchmark we have no run time measurement as this is
an interactive application. Each pair of dashed/solid lines
on the chart corresponds to one benchmark. The different
points denote different amounts of factoring, guided by pro-
file information. To collect profile information, (standard)
training inputs were used that in each case differ from the
measurement inputs. The measured versions range from no
covered code being factored (lower left points) to all code
being factored (upper right points). In between, gradually
more, hotter code (i.e., more frequently executed code) gets
factored. It is clear that the overheads can become very
large if the transformation is deployed blindly, but also that
the overheads, in particularly the performance overhead
can be easily reduced by excluding the hottest fragments
from the factorization. To what extent a certain reduction
limits the practical effectiveness of the protection of course
depends on the software at hand. In any case, excluding all
covered code cannot result in factored code dispatchers with
variable behavior. So clearly one should be willing to accept
some performance overhead. We do not consider this a big
problem: All MATE protections inherently come with some
overhead. Note that for the code size, the smallest overheads
are still rather large because we only excluded the executed
code. If program size is more important than performance, a
better strategy would be to exclude non-executed fragments.
Then much smaller size overheads can still be obtained.
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Fig. 17: Overhead versus factored code fragments

6.7 Sensitivity analysis

The opaque predicate insertion and factoring can be con-
figured in many ways: the mixture of fake fall-through and
fake branch-taken edges, amounts of fake edges in switch ta-
bles, use of different dispatchers, frequency of deployment,
execution frequency threshold, priority function, cycle size
of coupled protections and dispatchers, etc. A quantitative
sensitivity analysis can be found in our technical report [?].
Some major qualitative results are that:

• the false rates rise with more fake fall-through edges;
• the FN rates increase with increasing cycle size until

cycles of size 4. After that, the false negative rates
stabilize;

• the FP rates decrease with increasing cycle size.

7 RELATED WORK

7.1 Code factoring

Existing work on code factoring focused mainly on com-
paction, i.e., the removal of duplicate code to make binaries
smaller. Production tool chains already include optimisation
passes to factor identical procedures: Microsofts Visual C++
compiler [27], GNU GCC [40][41], Gold [42] and LLVM [43].
In academic research, Debray et al. [12], De Sutter et al. [28]
and Von Koch et al. [29] have developed code factoring
techniques to factor almost identical code on the basic block
level (the former two) and the procedural level (the latter
two). Computation time is reduced by defining a fingerprint
for each basic block and/or procedure and small differences
between procedures are compensated for by parameterizing
the factored code. Debray et al. and De Sutter et al. mitigated
differences between basic blocks by using an ad-hoc register
renaming algorithm and by canonicalising the instruction
schedule. This was not an issue for Von Koch et al. because
LLVM IR was used. Recently, Rocha et al. [30] used a DNA

size
overhead

performance
overhead



Conclusions

• Hide the boundaries of integrated software protection components by
• randomizing code layout at basic block level
• inserting coupled opaque predicates with fake edges across components
• deduplicating (factoring) common code fragments

• We can hence integrate protection components stealthily

• The protection has configurable potency and at least some resilience 


